Ultimately closed projective resolutions and rationality of Poincaré-Betti series
نویسندگان
چکیده
منابع مشابه
The Betti poset in monomial resolutions
Let P be a finite partially ordered set with unique minimal element 0̂. We study the Betti poset of P , created by deleting elements q ∈ P for which the open interval (0̂, q) is acyclic. Using basic simplicial topology, we demonstrate an isomorphism in homology between open intervals of the form (0̂, p) ⊂ P and corresponding open intervals in the Betti poset. Our motivating application is that the...
متن کاملMinimal Projective Resolutions
In this paper, we present an algorithmic method for computing a projective resolution of a module over an algebra over a field. If the algebra is finite dimensional, and the module is finitely generated, we have a computational way of obtaining a minimal projective resolution, maps included. This resolution turns out to be a graded resolution if our algebra and module are graded. We apply this ...
متن کاملA Conjecture on Poincaré-Betti Series of Modules of Differential Operators on a Generic Hyperplane Arrangement
The module of derivations D(1)(A) of a hyperplane arrangement A ∈ C (henceforth called an n-arrangement) is an interesting and much studied object [10, 9, 8]. In particular, the question whether this module is free, for various classes of arrangements, has received great attention. On the other hand, the module of higher differential operators D(m)(A) received their first incisive treatment in ...
متن کاملExistence of Gorenstein Projective Resolutions
Gorenstein rings are important to mathematical areas as diverse as algebraic geometry, where they encode information about singularities of spaces, and homotopy theory, through the concept of model categories. In consequence, the study of Gorenstein rings has led to the advent of a whole branch of homological algebra, known as Gorenstein homological algebra. This paper solves one of the open pr...
متن کاملBetti Numbers and Shifts in Minimal Graded Free Resolutions
Let S = K[x1, . . . ,xn] be a polynomial ring and R = S/I where I ⊂ S is a graded ideal. The Multiplicity Conjecture of Herzog, Huneke, and Srinivasan states that the multiplicity of R is bounded above by a function of the maximal shifts in the minimal graded free resolution of R over S as well as bounded below by a function of the minimal shifts if R is Cohen–Macaulay. In this paper we study t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1983
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1983-0695246-1